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1 Introduction

Transfer learning is a well-known machine learning technique that allows models to apply knowl-
edge obtained from one task to a different but related one. In the field of Reinforcement Learning,
this technique can considerably accelerate the learning process and increase the performance of
reinforcement learning (RL) agents. In consequence, there has been a surge of interest in devel-
oping effective transfer learning approaches in that field. Despite the fact that various strategies
have been offered, there is no universally acknowledged standard strategy. Taking this into
account, this report examines two papers from the renowned International Conference on Ma-
chine Learning (ICML) that suggest diverse techniques to investigate the state-of-the-art in this
discipline.

The first paper, titled ” REPAINT: Knowledge Transfer in Deep Reinforcement Learn-
ing” [1], introduces a novel approach for knowledge transfer in RL. The authors outline a tech-
nique that uses deep neural network layers to reuse and adapt information from a source task
to a target task. This strategy allows quicker learning and improved performance in the target
task by successfully updating the learnt knowledge.

The second paper, ” Reinforcement Learning with Action-Free Pre-Training from Videos”
[2], explores the concept of action-free pre-training as a means of transfer learning in RL. The
authors propose a framework where RL agents are pre-trained on videos without taking explicit
actions. The learned visual representations are then utilized in the RL task, enabling the agent
to acquire transferable knowledge and effectively learn the target task.

By examining these papers, I aim to compare and contrast different transfer learning techniques
in RL and gain insights into the advancements made in this field. Understanding the current
state of transfer learning in RL is crucial for identifying the most promising approaches and
driving further progress in this area.

2 REPAINT: Knowledge Transfer in Deep Reinforcement Learning

In this initial publication, the REPAINT algorithm for deep reinforcement learning knowledge
transfer is proposed. Even though there is no connection between the source and target tasks,
the objective is to accelerate the learning of complicated tasks. To explain in detail what this
post offers, I will first provide some background information on the research’s main concepts,
then go into detail about the suggested algorithm, present some of the experiments, and then
come to some conclusions and discuss further research.

2.1 Background

Transfer learning algorithms in RL can be characterized by the definition of transferred knowl-
edge, which contains the parameters of the RL algorithm, the representation of the trained
policy, and the instances collected from the environment. When the teacher and student tasks
share the same state-action space and they are considered similar parameter transfer is the most
straightforward approach, namely, one can initialize the policy or value network in the student
tasks by that from teacher tasks. Parameter transfer with different state-action variables is more
complex, where the crucial aspect is to find a suitable mapping from the teacher state-action
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space to the student state-action space. It is the latter case that is studied in more detail in this
paper. Two known approaches to do that are:

¢ Representation transfer: the algorithm first learns a particular representation of the
problem or answer, which it then abstracts to fit into the student task. Representation
transfer tries to extract and generalize underlying features or patterns that are useful across
numerous tasks rather than acquiring a separate representation for each task. Various
techniques, such as deep neural networks or other feature learning methods, can be utilized
to achieve representation transfer by extracting and encoding task-relevant features that
may be reused or transferred across tasks.

e Instance transfer: refers to the process of leveraging knowledge or experience gained
from a source task or instance to improve the learning or performance of a target task or
instance. It involves transferring relevant information, such as policies, value functions, or
representations, from a previously learned or solved task to a new, similar task. The goal
of instance transfer is to enhance the learning efficiency and generalization capability of
RL agents by capitalizing on similarities between tasks and leveraging prior knowledge or
experience.

To address instances of task similarity in RL, the researchers in the study suggest a representation-
instance transfer strategy that combines both approaches. The algorithm may easily be
modified to work with different other RL algorithms but is ideally suited for the actor-critic
architecture.

2.2 Algorithm

In the REPAINT algorithm, the critic update follows a traditional supervised regression ap-
proach, making it akin to a conventional actor-critic algorithm with Clipped PPO. However,
there are two fundamental concepts underlying the actor update: on-policy representation trans-
fer learning and off-policy instance transfer learning. With that, a novel experience selection
approach is employed to choose samples with high semantic relatedness, rather than mere simi-
larity, to the target task.

On-policy representation transfer learning serves as an initial mechanism. It involves
incorporating an auxiliary loss function into the Clipped PPO objective function to encourage
the student policy to closely align with the teacher policy. This auxiliary loss, weighted by the
scaling factor 8 >= 0, is essentially the cross-entropy between the teacher and student policies.
Consequently, the objective function becomes:

Lk(g) = Lclip(e) - BkLaux(e) (1)

This kickstarting aims to replicate the behavior of teacher policy in the early training stage, so
that it can improve the agent’s initial performance.

On the other hand, off-policy instance transfer learning aims to enhance performance when
the target task significantly differs from the source task, as kickstarting alone may yield limited
improvements. This approach, referred to as advantage-based experience selection, involves con-
structing a replay buffer by collecting training samples using the teacher policy, but evaluating
the rewards based on the current reward function of the target task. Furthermore, for improved
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sample efficiency, only samples with advantages exceeding a specified threshold are considered.
The advantage can be thought of as the additional reward that could be gained by taking a
specific action. Since advantages are calculated using the reward function of the target task,
state-action transitions with high advantage values are considered ”good” transfer samples, ir-
respective of the disparities between the source and target tasks.

These are the key elements that distinguish the algorithm from the standard actor-critic RL
approach. However, Figure 1 provides a more detailed overview of the algorithm. It is worth
noting that both the representation transfer weighting parameter and the instance transfer
threshold are specific to each task. In practice, larger values of §j; incentivize the agent to
closely align with the teacher policy, while larger values of ( result in fewer samples being
retained for policy updates. Consequently, this concentration on high-advantage experiences
directs the current learning process towards focusing on more valuable experiences.

Algorithm 1 REPAINT with Clipped PPO

Initialize v, 6, and load teacher policy Ticacher(+)
Set hyper-parameters (, a1, cvo, and Sy in (4.1)
for iteration k = 1,2,... do

Set Ooq < 0

Collect samples S = {(s,a, s’,7)} using 7, ()

Collect samples S= {(5,@,%,7)} using Tieqcher(+)
Fit state-value network V,, using only S to update v

Compute advantage estimates A, ..., Ap for S and
AL, .., Al for S
for t=1,..., 7" do /I experience selection

if A} < ( then

Remove A; and the corresponding transition
(3, ¢, 81, 7¢) from S
Compute sample gradient of Lﬁp(ﬁ) in (4.1) using S
Compute sample gradient of Lin(6) in (4.2) using &
Update policy network by

0 < 0+ a1VoLE (8) + aaVgLin(6)

Tep

Fig. 1: REPAINT algorithm’s pseudocode [1].

2.3 Experiments

Measuring how good a transfer learning algorithm is when applied to RL is not a trivial task. For
this, the paper proposes three ways to evaluate the algorithm. The evaluation metrics proposed
in the paper are:

e Improvement of the agent’s initial performance when learning from a pre-trained policy.
e Improvement of final performance and total accumulated reward after transfer.
e Reduction of training convergence time.

In this case, the paper focuses more on the last mentioned metric. This is because the focus of
the paper is on the case where transfer learning is done with quite different tasks and therefore
it is difficult to see an improvement of the results when the tasks are so different.

The paper analyses three different environments. In this report I will explain one of them in
depth and give a final summary with a general comparison between all experiments. The exper-
iment I have decided to analyse in depth is the one applied to autonomous racing in AWS
DeepRacer.
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In the experiment, two distinct reward functions are employed, each with a contrasting impact on
the agent’s behavior. One reward function encourages the agent when it occupies the inner lane
but penalizes it when in the outer lane, while the other reward function follows the opposite
pattern. When applying a specific reward function to the student task, the teacher policy
utilized during training is based on the alternative reward function. With this in mind, 4
different algorithms have been tested. First the algorithm without transfer learning was used
as a baseline, then the algorithm with only the representation transfer part, then the algorithm
with only the instance transfer part and finally the complete REPAINT algorithm. The results
obtained using these 4 techniques are shown in Figure 2.
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Fig. 2: Evaluation performance for DeepRacer single-car timetrial race (left). Trajectories of
policy evaluations (right) [1].

In summary, the left plot demonstrates that all models can complete a lap successfully once they
have converged. However, the REPAINT algorithm, combined with kickstarting, significantly
improves initial performance. Nevertheless, when the teacher task differs significantly from the
target task, kickstarting alone does not enhance the final performance through transfer learning.
On the other hand, instance transfer reduces training convergence time and leads to a better
final performance compared to kickstarting, with a small improvement margin in this specific
example.

The REPAINT algorithm is contrasted with the warm-start parameter transfer technique in
the right plot. When the target task and the instructor task are comparable, warm-start works
effectively. REPAINT performs better than warm-start in the DeepRacer single-car experiment
with drastically different workloads. During assessments, the agent’s track trajectories are dis-
played. Each model receives two hours of training before being put through 20 episodes of
evaluation. In spite of the different behaviors conveyed by the reward functions in both sce-
narios, REPAINT successfully concentrates on the current task while drawing on knowledge
from the teacher policy. This demonstrates the effectiveness of advantage-based experience se-
lection in instance transfer. In contrast, warm-start fails to eliminate unexpected behavior at
convergence, as it can get stuck in local optimal. Therefore, warm-start’s impact on the final
performance is significant only when the two tasks are highly similar.
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In reference to the other experiments, Figure 3 shows a summary of these. The teacher type
in this context indicates whether the teacher task is a sub-task of or similar to the target task,
determined by cosine similarity. The target score represents the best performance achievable by
the baseline model. We also provide the number of training iterations required by each model to
reach the target score, including training with baseline, kickstarting (KS), instance transfer (IT),
and REPAINT. Although the primary focus is on the training time reduction achieved through
transfer learning, it is included the best scores obtained by each knowledge transfer model in
the table. The kickstarting model performs well when the tasks are similar or the target task is
straightforward. However, it fails to significantly enhance initial performance through transfer
learning. On the other hand, the instance transfer model is capable of transferring relevant
samples but does not provide a substantial boost to initial performance. In contrast, REPAINT
consistently demonstrates superior performance regardless of task similarity.

B Teacher Target T Kxs Kir Krepaint Best scores
- type score Bascline  (pct. reduced)  (pet. reduced)  (pet. reduced)  KS IT  REPAINT
’ similar 51(71%) 97 (44%) 42 (16%) =53 59 54
Roacher'  ithemni 07 1 73 (58%) 127 27%) S1(T1%) 69 64 52
Ant similar 3685 997 363 (64%) 623 (38%) 334 (669%) 5464 5172 5540
Sinole-car different 304 18 Not achieved Not achieved 13 (28%) 331 388 306
& different 345 22 Not achieved Not achieved 15 (32%) 300 319 354
Multi-car sub-task 1481 100 34 (66%) 75 (25%) 29 (71%) 1542 1610 1623
T difffsub-task 2.7 77 66 (14%) 53 (31%) 25 (68%) 49 42 6.1

StarCraft 11 sub-task 112 95 92 (3%) 24 (75%) 6 (94%) 125 a1z 276

Fig. 3: Summary of paper’s experiments [1].

In conclusion, the algorithm significantly reduces training time for each target task and generally
improves the final return scores across most tasks.

2.4 Future research

In future work, the researchers propose to investigate how REPAINT can autonomously learn
task similarity and dynamically determine the optimal values of 5 and { during training based
on the similarity. Preliminary results suggest that larger values of 8, may negatively impact
the asymptotic performance of the agent when the task similarity is low. Additionally, the
researchers are interested in exploring the influence of neural network architectures on transfer
performance.

3 Reinforcement Learning with Action-Free Pre-Training from Videos

Another promising avenue in transfer learning for RL is Reinforcement Learning Pretraining
from Videos (RLPV), which combines the strengths of unsupervised representation learning
from video data and reinforcement learning. RLPV takes advantage of the abundant video data
available today. The idea is to pretrain an RL agent on a large collection of videos to learn
general-purpose visual representations. In consequence, by capturing the temporal dynamics
and spatial relationships in the videos, the agent can acquire a rich understanding of the visual
world, similar to how humans learn from observing the environment. This is exactly the ap-
proach taken in this paper.
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In general, the paper presents APV: Action-Free Pre-training from Videos, a novel frame-
work that performs generative pre-training on videos for improving the sample-efficiency of
vision-based RL. However, since the goal is to learn a representation that can be transferred to
various tasks, the framework do not require the videos to be collected in the same domain of
the target task and also it is not assumed the datasets contain action information.

In the following sections, I aim to provide a comprehensive overview of the key concepts un-
derpinning the proposed framework. To ensure clarity and coherence, I will adopt a structured
approach similar to that employed in the previous paper. First I will explain some background
concepts necessary to understand the method used. Then I will explain the method itself. Then
I will show some of the experiments run. Finally, I will draw some conclusions and future work.

3.1 Background

All the concepts that sustain the method of the paper are based on three main background
aspects which are: unsupervised representation learning for CV and NLP, unsupervised repre-
sentation learning for RL and behaviour learning with videos.

Unsupervised representation learning has been investigated in the context of RL to im-
prove the sample-efficiency of RL algorithms. Notably, Jaderberg et al. (2017) showed how
improving auxiliary unsupervised losses might improve RL agents’ performance. The strategy
taken in the work differs from that of previous research in that it emphasizes pre-training of
representations, in contrast to studies that have focused on optimizing auxiliary unsupervised
objectives during RL training. As a result, a novel pre-training framework is suggested that
makes use of action-free movies derived from various domains with unique visual qualities and
manifestations. In contrast to other methods, the focus here is on using the richness of data
seen in unlabeled videos to build rich visual representations before RL training begins.

On the other hand, video datasets have also been utilized for behavior learning in various
ways. For example, Aytar et al. (2018) addressed challenging exploration tasks in the Atari
benchmark by devising an imitation reward mechanism derived from YouTube videos. Similarly,
Peng et al. (2018) introduced a method to learn physical skills by extracting reference motions
from human demonstration videos and training an RL agent to imitate these motions. There-
fore, while previous studies focused on leveraging videos to extract behavior-specific information
or imitate specific motions, here the emphasis lies in utilizing the visual information contained
in videos to pre-train representations.

3.2 Method

To implement all the concepts explained in the previous section, the paper presents a method
called APV: Action-Free Pre-trainig from Videos built on DreamerV2 (Hafner et al.,
2021). DreamerV2 is an advanced reinforcement learning (RL) algorithm that builds upon
the original Dreamer algorithm, designed to solve complex sequential decision-making problems.
The key idea behind DreamerV2 is to leverage a learned world model, which is a predictive model
that captures the dynamics of the environment, to generate imaginary rollouts or simulated tra-
jectories. These rollouts help the agent to explore and plan in the environment without the need



Course 2022-2023
@ REINFORCEMENT LEARNING

for costly real-world interactions.

With this in mind, I will focus on explaining how the APV model has been constructed. This
framework is based on the following three main concepts:

e Action-free pre-training from videos: the idea is to learn a latent video prediction
model, which is an action-free variant of a latent dynamics model proposed in Dream-
erV2. This should help to capture rich information from diverse videos without action
information.

e Stacked latent prediction model: once the previous model is pre-trained, the next step
is to tune it into an action-conditional prediction model, which can be used for solving
various visual control tasks.

e Video based intrinsic bonus: technique used to improve exploration by encouraging
agents to learn diverse behaviours.

The functioning of these three elements can be summarized by the picture shown in Figure 4.

Action-free Pre-training from Videos Fine-tuning
Gt X 1 & A }
:;ﬁ?{'; LS 't ! — N -

T ' 4 . 7
> b 4 ".‘iﬂ "ﬂi { e __._.'P" ﬁ.—»
Gas -9

Videos from Action-free Video Action-conditional Behavior
Different Domains  Prediction Model ‘World Model Learning

Fig. 4: Summary of method’s process [2].

3.2.1 Action-free pre-training from videos

The model proposed to perform this task consists of three main components. First, a repre-
sentation model encodes observations to a model state with Markovian transitions. Following,
a transition model predicts future model states without access to the observations. Finally, an
image decoder reconstructs image observations. This model is trained in for two main tasks,
first, to reconstruct image observations but then to make the prediction from the representation
model and transition model as close as possible. This is done by minimizing the negative varia-
tional lower bound (ELBO).

Since the transition model does not condition on observations, it allows the model to efficiently
predict future states in latent space without needing to predict future images using the image
decoder at inference time.

3.2.2 Stacked latent prediction model

To effectively utilize the pre-trained representations, a new architecture is introduced. This new
architecture stacks an action-conditional prediction model on top of the action-free model. At
this point the architecture of the complete model can be visualized as in Figure 5.
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01 02 03

Fig. 5: Illustration of stacked latent prediction model’s architecture [2].

3.2.3 Video-based Intrinsic Bonus

The researchers applied average pooling across the sequence dimension to obtain a trajectory
representation, denoted as y:, from a sequence of model states derived from the action-free
prediction model, z; : t + 7. They then utilized the distance between y; and its k-nearest
neighbor in samples from a replay buffer as a metric for assessing the diversity of trajectories.

3.3 Experiments

The method explained above has been tested in two different ways based on one hand, on
vision-based manipulation tasks from Meta-world, and on the other hand, on robotic locomo-
tion tasks from DeepMind Control Suite. In this report I will show the experiments first
mentioned, as they should be enough to see the performance of the method.

In order to assess the efficacy of APV in learning valuable representations across diverse do-
mains, the researchers employed videos obtained from robotic manipulation tasks in the RL-
Bench dataset as pre-training data. A total of 4950 videos were collected, consisting of 10
demonstrations for each of the 99 tasks in RLBench, with each demonstration captured from 5
different camera views. The action-free video prediction model was then trained over 600,000
gradient steps. For subsequent tasks, the model underwent fine-tuning over 250,000 environment
steps, equivalent to 500 episodes.

The results of this process are compared with the DreamerV2 proposal in Figure 6. In this
plot can be observed that in all the tasks examined, APV consistently demonstrated superior
sample-efficiency compared to DreamerV2. Notably, the framework achieved a success rate
exceeding 60% in the Lever Pull task, while DreamerV2 was unable to solve the task. These
findings highlight the effectiveness of APV in leveraging action-free videos to acquire valuable
representations that enhance the sample-efficiency of vision-based RL methods.
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Fig. 6: Results of Meta-world experiments [2].

3.4 Future work

The study’s experimental results show that APV has the ability to improve both sample-
efficiency and ultimate performance of vision-based RL in various manipulation and locomo-
tion tasks. This enhancement is accomplished by effectively transfering previously unexplored
domains’ pre-trained representations. However, due to the underfitting issue discovered in the
research, the work has a constraint in that the pre-training is only done on simulated robotic
footage.

To solve this issue, one promising future research avenue would be to evaluate the influence of
prediction quality on performance by scaling up the design or employing recently established
video prediction architectures. Another area worth investigating is the use of generalization
approaches in RL to address the domain disparity between pre-training and fine-tuning. Fur-
thermore, while current research focuses on representation learning via generative pre-training,
it would be beneficial to study the efficacy of alternative representation learning schemes such
as masked prediction.

4 Conclusions

In this paper, I have investigated the state of the art of transfer learning applied to Reinforce-
ment Learning, based on two papers from recent years. This publications present two different
approaches to address knowledge transfer and pre-training in the field of deep reinforcement
learning. Although the objective is very similar, there are quite a few differences between the
two methods presented.

First and foremost, the method is clearly distinct. REPAINT uses a teacher-student struc-
ture in which the teacher model generates demonstrations or gives reward signals to guide the
student model’s learning. This knowledge transfer assists the student model in applying pre-
viously learned skills to new activities or contexts. Reinforcement Learning with Action-Free
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Pre-Training from Videos, on the other hand, uses a large dataset of unlabeled videos to pre-
train the model. It learns visual representations from the videos, which improves generalization
and performance in downstream reinforcement learning tasks.

Conversely, the data needs and transfer mechanisms of previous explaoined techniques vary. Re-
inforcement Learning with Action-Free Pre-Training from videos merely needs a large dataset
of unlabeled videos, whereas REPAINT requires access to a pre-trained instructor model plus
demonstrations or reward models from the teacher. REPAINT speeds learning and enhances
performance by utilizing the expertise of the teacher model, whilst the video pre-training in the
later technique pursues a similar goal by aiding the acquisition of helpful visual representations
for boosting generalization.

In conclusion, REPAINT and Reinforcement Learning with Action-Free Pre-Training from
Videos offer distinct methodologies for addressing transfer learning in deep reinforcement learn-
ing. These approaches provide valuable insights into the evolving field, but certain limitations
and areas for improvement should be acknowledged.

While both methods attempt to cover a range of tasks, the experiments conducted in these
papers tend to focus on specific tasks. For instance, the second method is only applicable in
environments where the agent perceives the environment through artificial vision. Although
both papers suggest that the agents can generalize to tasks beyond their pre-training, achieving
the level of generalization seen in other fields like NLP or VC is still a significant challenge.
Further research is needed to enhance the agents’ generalization capabilities.

Additionally, it is worth noting that the methods described in the papers are explained using
specific architectures. For example, the first method exclusively tests actor-critic algorithms.
To advance the field, there is an opportunity to develop methods that can be applied to any
reinforcement learning algorithm. As we have learned in the course, different algorithms are
better suited for specific types of problems, and generalizing methods across various algorithms
would be valuable.

10
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